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Abstract
We explore neuronal mechanisms of discriminating between masked signals.
It is found that when the correlation between input signals is zero, the
output signals are separable if and only if input signals are separable. With
positively (negatively) correlated signals, the output signals are separable
(mixed) even when input signals are mixed (separable). Exact values of
discrimination capacity are obtained for two most interesting cases: the exactly
balanced inhibitory and excitatory input case and the uncorrelated input case.
Interestingly, the discrimination capacity obtained in these cases is independent
of model parameters, input distribution and is universal. Our results also
suggest a functional role of inhibitory inputs and correlated inputs or, more
generally, the large variability of efferent spike trains observed in in vivo
experiments: the larger the variability of efferent spike trains, the easier it is to
discriminate between masked input signals.

PACS number: 87.19.La

1. Introduction

We present a study on the discrimination capacity of the simplest neuron model: the integrate-
and-fire (IF) model. Suppose that a neuron receives two sets of signals. Both of them are
contaminated by noise, as shown in figure 1. After neuronal transformations, we want to
know whether the signals become more mixed or more separated. This is a typical scenario
in decision theory.

We conclude that without correlation between signals, the output histograms are separable
if and only if the input histograms are separable. With positively correlated input signals, the
output histograms become more separable than input histograms. With negatively correlated
input signals, the output histograms are more mixed than input histograms. This is a clear-cut
and interesting result. In fact, in recent years, there have been many publications devoted to
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Figure 1. Two possibly mixed input signals, after neuronal transformation. Will they become
more separated or more mixed?

exploring the functional role of correlated neuronal activity. For example, synchronization is a
special case of correlated neuronal activity [17, 19, 37]. People have extensively investigated
the functional roles of correlations in neurons from information theoretic approaches
[24, 25, 36], experimental approaches [32, 41] and modelling approaches [1, 6, 33, 34].

In the classical theory of neural networks, we only take into account the excitatory inputs.
However, in recent years, we have found many intriguing functional roles of inhibitory inputs,
ranging from linearizing the input–output relationship of a neuron [14], to synchronizing a
group of neurons [38] and to actually increasing neuron firing rates [9]. In particular, neuronal
and neuronal network models with an exactly balanced inhibitory and excitatory input are
intensively studied in the literature [30, 39]. For these two most interesting cases, independent
input case and exactly balanced input case, we are able to find the exact value of neuronal
discrimination capacity. Roughly speaking, here discrimination capacity is the minimal
number of synapses carrying signals so that the output histograms of the neuron are separable,
provided that input signals are different (see section 3 for the definition). Interestingly, the
obtained analytical discrimination capacity is universal for the model. It is independent of the
decay rate, threshold, magnitude of excitatory postsynaptic potential (EPSP) and inhibitory
postsynaptic potential (IPSP), and the input signal distributions.

The paper is organized as follows. In section 2, the model is exactly defined. In
section 3, we consider the worst case and the exact value of discrimination capacity is obtained.
In section 4, we generalize the results from section 3. In section 5, some numerical results
are included. We have presented numerical results for the integrate-and-fire model and the
IF–FHN model [9] in a meeting report [10]. In section 6, we briefly discuss related issues.
And finally, in the appendix, theoretical proofs of theorems in section 4 and section 5 are
presented.

2. The models

The neuron model we use here is the classical integrate-and-fire model [5, 8, 13, 35]. When
the membrane potential V

(k)
t is below the threshold Vthre, it is given by
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dV
(k)
t = −L

(
V

(k)
t − Vrest

)
dt + dI (k)

syn(t) (1)

where L is the decay coefficient and the synaptic input is

I (k)
syn(t) = a

p∑
i=1

E
(k)
i (t) − b

q∑
j=1

I
(k)
j (t)

with E
(k)
i (t), I

(k)
i (t) as Poisson processes with rates λ

(k)
i,E and λ

(k)
i,I , respectively, a > 0, b > 0

are the magnitudes of each EPSP and IPSP, p and q are the total number of active excitatory
and inhibitory synapses, k = 1, 2 represent different input signals and we aim at discriminating
between them in terms of an observation of efferent firing rates. Once V

(k)
t crosses Vthre from

below a spike is generated and V
(k)
t is reset to Vrest, the resting potential. This model is termed

the IF model. The interspike interval of efferent spikes is

T (k) = inf
{
t : V

(k)
t � Vthre

}
.

For simplicity of notation we assume that q = p and λ
(k)
i,I = rλ

(k)
i,E , where 0 � r � 1 is the

ratio between inhibitory and excitatory inputs.
Furthermore we suppose that pc out of p synapses carry the true signal and the rest of

the p − pc synapses are noise (or distorted) signals. Synapses which code true signals are
correlated, but synapses which code noise are independent. For simplicity of notation we
assume that the correlation coefficient between the ith excitatory (inhibitory) synapse and the
jth excitatory (inhibitory) synapse is a constant c, where i, j = 1, . . . , pc. The correlation
considered here reflects the correlation of activity of different synapses, as discussed and
explored in [9, 40]. More specifically, synaptic inputs take the following form (p = q):

I (k)
syn(t) = a

p∑
i=1

E
(k)
i (t) − b

p∑
j=1

I
(k)
j (t)

= a

pc∑
i=1

E
(k)
i (t) + a

p∑
i=pc+1

E
(k)
i (t) − b

pc∑
i=1

I
(k)
i (t) − b

p∑
i=pc+1

I
(k)
i (t)

where E
(k)
i (t), i = 1, . . . , pc, are correlated Poisson processes with an identical rate λ(k)

(signal), E
(k)
i (t), i = pc + 1, . . . , p, are Poisson processes with a firing rates λi independently

and identically distributed random variables from [0, λmax] Hz (noise), I
(k)
i (t), i = 1, . . . , p,

have the same properties as E
(k)
i (t), but with a firing rate of rλ(k) or rλi for r ∈ [0, 1]

representing the ratio between inhibitory and excitatory inputs. It was pointed out in [30] that
the ratio of inhibitory and excitatory synapses is around 15/85. Of course, in general, inhibitory
inputs are larger than excitatory inputs. All conclusions below can be easily extended to the
case of r > 1. On the other hand, for simplicity of notation, we have introduced a single
parameter r to describe the relationship between inhibitory and excitatory inputs. From the
proofs below, we can see that this assumption can be easily relaxed. Without loss of generality
we simply assume that λ(1), λ(2) ∈ [0, λmax] Hz.

Hence the neuron model receives two set of inputs: one is

a

pc∑
i=1

E
(1)
i (t) + a

p∑
i=pc+1

E
(1)
i (t) − b

pc∑
i=1

I
(1)
i (t) − b

p∑
i=pc+1

I
(1)
i (t)

where the signal term

a

pc∑
i=1

E
(1)
i (t) − b

pc∑
i=1

I
(1)
i (t)
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is masked by the noise term

a

p∑
i=pc+1

E
(1)
i (t) − b

p∑
i=pc+1

I
(1)
i (t)

and the other is

a

pc∑
i=1

E
(2)
i (t) + a

p∑
i=pc+1

E
(2)
i (t) − b

pc∑
i=1

I
(2)
i (t) − b

p∑
i=pc+1

I
(2)
i (t)

where the signal term

a

pc∑
i=1

E
(2)
i (t) − b

pc∑
i=1

I
(2)
i (t)

is masked by the noise term

a

p∑
i=pc+1

E
(2)
i (t) − b

p∑
i=pc+1

I
(2)
i (t).

In the following, we further use diffusion approximations to approximate synaptic inputs
[35] and assume a = b:

i(k)
syn(t) = apcλ

(k)t + a

p∑
i=pc+1

λit − bpcrλ
(k)t − b

p∑
i=pc+1

rλit

+

√√√√(a2 + b2r)λ(k)pc(1 + c(pc − 1)) + (a2 + b2r)

p∑
i=pc+1

λi · Bt

= a(1 − r)t


pcλ

(k) +
p∑

i=pc+1

λi




+ a

√√√√√(1 + r)


λ(k)pc(1 + c(pc − 1)) +

p∑
i=pc+1

λi


 · Bt (2)

where Bt is the standard Brownian motion.
Therefore the term

a(1 − r)t


pcλ

(k) +
p∑

i=pc+1

λi


 k = 1, 2 (3)

in equation (2) is the mean input signal to the cell. Without loss of generality, we always
assume that λ(1) < λ(2). Denote p

(in)
k (λ) as the distribution density of random variables (ignore

the constants a(1 − r)t in equation (3)).

pcλ
(k) +

p∑
i=pc+1

λi. (4)

In summary, we consider the case that a neuron receives p synaptic inputs, with pc out
of p carrying the signals and p − pc being noise (distorted signals). The setup here roughly
corresponds to the experiments of Newsome and his colleagues. We will explore this aspect
in further publications [12].
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Figure 2. A schematic plot of two output histograms, R
(out)
min (λ2) and R

(out)
max (λ(1)). As soon as

R
(out)
min (λ2) − R

(out)
max (λ(1)) > 0, the two histograms are separable.

3. Discrimination capacity: the worst case

For a fixed λ(1) < λ(2) we have two corresponding histograms p
(out)
1 (λ) and p

(out)
2 (λ) of output

firing rates as shown in figure 2. Let

R(out)
min (λ(2)) = min

{
λ : p

(out)
2 (λ) > 0

}
and

R(out)
max (λ(1)) = max

{
λ : p

(out)
1 (λ) > 0

}
and denote

α(λ(1), λ(2), c, r) = {
pc : R(out)

min (λ(2)) = R(out)
max (λ(1))

}
. (5)

Hence for fixed (λ(1), λ(2), c, r), α(λ(1), λ(2), c, r) gives us the critical value of pc: when
pc > α(λ(1), λ(2), c, r) the input patterns are perfectly separable in the sense that the output
firing rate histograms are not mixed; when pc < α(λ(1), λ(2), c, r) the input patterns might not
be separable. For fixed λ(1), λ(2), c, r), α is termed the (worst) discrimination capacity of the
neuron.

For input signals let us introduce more notation. Define

R(in)
min(λ

(2)) = min
{
λ : p

(in)
2 (λ) > 0

}
and

R(in)
max(λ

(1)) = max
{
λ : p

(in)
1 (λ) > 0

}
.

Therefore as soon as R(in)
min(λ

(2)) > R(in)
max(λ

(1)) the two masked inputs are perfectly separable.
Otherwise the two masked inputs are mixed. Hence the relationship between R(in)

min(λ
(2)) −

R(in)
max(λ

(1)) and R(out)
min (λ(2)) − R(out)

max (λ(1)) characterizes the input–output relationship of the
signals.
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3.1. Behaviour of α(λ(1), λ(2), c, r)

First of all, we note that the output firing rate is given by [35]

〈T (k)〉 = 2

L

∫ A(Vthre,
∑p

j=pc+1 λj )

A(Vrest,
∑p

j=pc+1 λj )

g(x) dx (6)

where

A(x, y) = xL − a[pcλ
(k) + y](1 − r)

a
√

[λ(k)pc(1 + c(pc − 1)) + y](1 + r)

and

g(x) =
[

exp(x2)

∫ x

−∞
exp(−u2) du

]
.

Let us define

T̃ (k)(x) = 2

L

∫ A(Vthre,x)

A(Vrest,x)

g(u) du. (7)

We know that the output firing rate is calculated via

1000/(〈T (k)〉 + Tref)

where Tref is the refractory period. It is obvious that T̃ (x) is a monotonic function of input
x � 0, i.e. the output firing rate of a neuron is an increasing function of input. We conclude
that α(λ(1), λ(2), c, r) is the solution of the following equation for pc:∫ VthreL

0
g

(
y − a[pcλ

(1) + (p − pc)λmax](1 − r)

a
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax](1 + r)

)
dy

=
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax]√
[λ(2)pc(1 + c(pc − 1))]

×
∫ VthreL

0
g

(
y − a(pcλ

(2))(1 − r)

a
√

[λ(2)pc(1 + c(pc − 1))](1 + r)

)
dy. (8)

The critical value α(λ(1), λ(2), c, r) can be found analytically in the two most interesting
cases: c = 0 and r = 1. Define

0 � � = λ(2) − λ(1)

λmax
� 1.

We then have the following conclusions:

Theorem 1. We assume � > 0, 0 < r < 1,

• When c > 0 we have

α(λ(1), λ(2), c, 1) < α(λ(1), λ(2), 0, r) (9)

and furthermore

α(λ(1), λ(2), c, 1) =
√

[�(1 − c) + 1]2 + 4pc� − (1 − c)� − 1

2c�
. (10)
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Figure 3. α versus � for c = 0, r = 0 (dotted line, independent of r according to theorem 1) and
c = 0.1, r = 1 (solid line).

• When c = 0 we have

α(λ(1), λ(2), 0, r) = p

1 + �
(11)

independent of r.
• When c < 0 we have

α(λ(1), λ(2), c, 1) > α(λ(1), λ(2), 0, r). (12)

The proof of theorem 1 is quite tricky and we postpone it to the appendix. In fact, from all
our numerical results (see figure 4, bottom panel), we have the following stronger conclusions
than theorem 1 (equations (9) and (12)).

• When c > 0 we have

α(λ(1), λ(2), c, r2) < α(λ(1), λ(2), c, r1) (13)

where 1 � r2 > r1 > 0.
• When c < 0 we have

α(λ(1), λ(2), c, r2) > α(λ(1), λ(2), c, r1) (14)

where 1 � r2 > r1 > 0.

However, we are not able to prove theoretically the stronger conclusions (equations (13)
and (14)).

It is interesting to note that equations (11) and (10) are independent of a, Vthre and L,
three essential parameters in the integrate-and-fire model. In other words, the results of
equations (11) and (10) of the integrate-and-fire model are universal. In figure 3 we plot α

versus � for c = 0 and c = 0.1 according to equations (11) and (10). For a given � and
c = 0.1, the solid line in figure 3 gives us the smallest number of coherently synaptic inputs for
an integrate-and-fire model to discriminate between input signals if we assume that r ∈ [0, 1].
Hence the solid line in figure 3 is the smallest discrimination capacity of an integrate-and-fire
model with c = 0.1. It is worth pointing out that the lowest limit of α is about α = 23.
Finally we want to emphasize that our results are independent of input distributions. No
matter what the input distribution is, as soon as pc is greater than 40, the input signal can be
perfectly separated from an observation of efferent spike trains provided that � = 0.5. The
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improvement of discrimination capacity from r = 0 to r = 1 is remarkable, almost halving in
most cases.

A universal result as in equations (10) and (11) above is illuminating since it is independent
of model parameters and then widely applicable. However, the downside of such a result is that
neurons modify their connections to improve their performance. Therefore we would argue
that learning plays no role in improving its discrimination capacity, or discrimination tasks are
not a primary computational task for a neuronal system. However, we want to point out that
equation (10) is obtained for r = 1, the case with exactly balanced inhibitory and excitatory
inputs. In a biologically realistic situation, neuron systems might operate in a region with
r < 1. In the circumstances, α could depend on various model parameters and so learning
might be important to improve the integrate-and-fire model discrimination capacity. Certainly
to find a learning rule to improve neuronal discrimination capacity would be an interesting
topic.

3.2. Input–output relationship

We first want to assess whether R(out)
min (λ(2)) − R(out)

max (λ(1)) > 0 even when R(in)
min(λ

(2)) −
R(in)

max(λ
(1)) < 0, i.e. the input signal is mixed, but the output signal is separated. In

figure 4 we plot R(out)
min (λ(2)) − R(out)

max (λ(1)) versus R(in)
min(λ

(2)) − R(in)
max(λ

(1)). It is easily seen
that, after neuronal transformation, mixed signals are better separated when c > 0. For
example, when c = 0.1, r = 1 and R(in)

min(λ
(2)) − R(in)

max(λ
(1)) = −5000 Hz (mixed), but

R(out)
min (λ(2)) − R(out)

max (λ(1)) > 0 (separated). The conclusion is not true for c = 0, but the
separation is not worse after neuronal transformation. In figure 4, it is clearly seen that when
r < 1 and c �= 0, the discrimination capacity depends on model parameters.

We can prove the following conclusions:

Theorem 2. For the integrate-and-fire model

• if c > 0 we have

R(out)
min (λ(2)) − R(out)

max (λ(1)) > 0 when R(in)
min(λ

(2)) − R(in)
max(λ

(1)) = 0

• if c = 0 we have

R(out)
min (λ(2)) − R(out)

max (λ(1)) = 0 when R(in)
min(λ

(2)) − R(in)
max(λ

(1)) = 0

• if c < 0 we have

R(out)
min (λ(2)) − R(out)

max (λ(1)) < 0 when R(in)
min(λ

(2)) − R(in)
max(λ

(1)) = 0.

The conclusions above completely answer the question raised in the introduction. When
c > 0, the output histograms become more separated than input histograms; when c < 0, the
output histograms are more mixed than input histograms. c = 0 is the critical case.

4. Discrimination capacity: the distribution dependent case

Consider the random variable
(∑p

i=pc+1 λi

)
in equation (4) and let us denote

(∑p

i=pc+1 λi

)
j

as its jth sampling. We see that after m times of sampling, the smallest input signal would be

pcλ
(k) +


 p∑

i=pc+1

λi




(m)

(15)
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Figure 4. Upper panel, input difference R
(in)
min(λ

(2)) − R
(in)
max(λ

(1)) and output difference
R

(out)
min (λ(2))−R

(out)
max (λ(1)) for c < 0 (left), c = 0 (middle) and c > 0 (right). Output firing rates are

equal to 1000/(〈T (k)〉 + Tref) with Tref = 5 ms. Bottom panel (left), numerical values are obtained
by directly solving equation (8). Bottom panel (right), the dependence of the discrimination
capacity on a with r = 0.4, c = −0.01.

and the largest would be

pcλ
(k) +


 p∑

i=pc+1

λi




(m)

(16)

where
(∑p

i=pc+1 λi

)(m)
and

(∑p

i=pc+1 λi

)
(m)

are the largest and smallest extreme values of the

random variable
(∑p

i=pc+1 λi

)
. Note that in section 3, we consider the worst cases and use 0

as the smallest input signal and (p − pc)λmax as the largest input signal.
We can carry out a rigorous analysis on the behaviour of the extreme values of the random

variable
(∑p

i=pc+1 λi

)
. However, the conclusion obtained will then depend on the actual

distribution of λi . To avoid this, we then assume that p � pc, λi, i = pc + 1, . . . , p, is an
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identically and independently distributed random sequence (only for technical convenience)
and we have 

 p∑
i=pc+1

λi − (p − pc)〈λp〉

/(

√
p − pcσ(λp)) ∼ N(0, 1)

where σ(λp) =
√〈

λ2
p

〉− 〈λp〉2.

We need the following lemma [21]:

Lemma 1. For ξn being an identically and independently distributed normal sequence of
random variables,

P(am((ξ)(m) − bm) � x) → exp(− exp(−x)) (17)

where {
am = (2 log m)1/2

bm = (2 log m)1/2 − 1
2 (2 log m)−1/2(log log m + log(4π)).

(18)

Basically lemma 1 tells us that approximately (ξ)(m) diverges to positive (negative) infinity at
a speed of bm (−bm). We thus conclude that
 p∑

i=pc+1

λi




(m)

∼ min{[(p − pc)〈λp〉 +
√

p − pcσ(λp)(bm)], (p − pc)λmax} (19)

and 
 p∑

i=pc+1

λi




(m)

∼ max{[(p − pc)〈λp〉 − √
p − pcσ(λp)(bm)], 0}. (20)

We see that when m → ∞,
(∑p

i=pc+1 λi

)(m) → (p−pc)λmax and
(∑p

i=pc+1 λi

)
(m)

→ 0, which
is the worst case we considered in the previous section.

For fixed λ(1) < λ(2) and m, as before, we have two corresponding empirical histograms
p

(out)
1 (λ,m) and p

(out)
2 (λ,m) of output firing rates. Let

R(out)
min (λ(2), m) = min

{
λ, p

(out)
2 (λ,m) > 0

}
and

R(out)
max (λ(1), m) = max

{
λ, p

(out)
1 (λ,m) > 0

}
and denote

β(λ(1), λ(2), c, r,m) = {
pc : R(out)

min (λ(2), m) = R(out)
max (λ(1), m)

}
. (21)

Hence for fixed (λ(1), λ(2), c, r,m), β(λ(1), λ(2), c, r,m) gives us the critical value of pc and
we call it the discrimination capacity of the neuron (under m samplings).

4.1. Behaviour of β(λ(1), λ(2), c, r,m)

As in the previous section, we conclude that β(λ(1), λ(2), c, r,m) is the solution of the following
equation (pc):
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∫ VthreL

0
g


 y − a

[
pcλ

(1) +
(∑p

i=pc+1 λi

)(m)]
(1 − r)

a

√[
λ(1)pc(1 + c(pc − 1)) +

(∑p

i=pc+1 λi

)(m)]
(1 + r)


 dy

=
√[

λ(1)pc(1 + c(pc − 1)) +
(∑p

i=pc+1 λi

)(m)]
√[

λ(2)pc(1 + c(pc − 1)) +
(∑p

i=pc+1 λi

)
(m)

]

×
∫ VthreL

0
g


 y − a

[
pcλ

(2) +
(∑p

i=pc+1 λi

)
(m)

]
(1 − r)

a
√[

λ(2)pc(1 + c(pc − 1)) +
(∑p

i=pc+1 λi

)
(m)

]
(1 + r)


 dy. (22)

The critical value β(λ(1), λ(2), c, r,m) can be analytically found in the two most interesting
cases: c = 0 and r = 1. Define

0 � � = λ(2) − λ(1)

σ (λp)
.

This corresponds to the parameter � defined in the previous section.

Theorem 3. For � > 0

• when c > 0 we have

β(λ(1), λ(2), c, 1,m) < β(λ(1), λ(2), 0, r,m) (23)

and furthermore β = β(λ(1), λ(2), c, 1,m) is the solution of the equation

�β(1 + c(β − 1)) = 2
√

p − βbm (24)

provided that the approximations (19) and (20) are used.
• When c = 0 we have

β(λ(1), λ(2), 0, r,m) = 2bm

[√
b2

m + p�2 − bm

]
�2

(25)

independent of r, provided that the approximations (19) and (20) are used.
• When c < 0 we have

β(λ(1), λ(2), c, 1,m) > β(λ(1), λ(2), 0, r,m). (26)

Again from numerical simulations (see figures 6 and 8) we conclude the following.

• When c > 0 we have

β(λ(1), λ(2), c, r2,m) < β(λ(1), λ(2), c, r1,m) (27)

where 1 � r2 > r1 > 0.
• When c < 0 we have

β(λ(1), λ(2), c, r2,m) > β(λ(1), λ(2), c, r1,m) (28)

where 1 � r2 > r1 > 0.

Again it is interesting to note that equations (25) and (24) are independent of a, Vthre

and L, three essential parameters in the integrate-and-fire model. In other words, the
results of equations (25) and (24) of the integrate-and-fire model are universal. In figure 5
we plot β versus � for c = 0 and c = 0.1 according to equations (25) and (24).
For a given � and c = 0.1, the solid line in figure 5 gives us the smallest number of coherently
synaptic inputs for an integrate-and-fire model to discriminate between input signals for
r ∈ [0, 1]. Hence the solid line in figure 5 is the smallest discrimination capacity of an
integrate-and-fire model with c = 0.1 if we assume that r ∈ [0, 1]. It is worth pointing out
that the lowest limit of β is about β = 14.
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Figure 5. β versus � for c = 0, r = 0 (dotted line, independent of r according to theorem 3) and
c = 0.1, r = 1 (solid line) with m = 100.

4.2. Input–output relationship

As before, we can assess the relationship between input and output histograms.
We can prove the following conclusions.

Theorem 4. For the integrate-and-fire model,

• if c > 0 we have

R(out)
min (λ(2), m) − R(out)

max (λ(1), m) > 0 when R(in)
min(λ

(2), m) − R(in)
max(λ

(1), m) = 0

• if c = 0 we have

R(out)
min (λ(2), m) − R(out)

max (λ(1), m) = 0 when R(in)
min(λ

(2), m) − R(in)
max(λ

(1), m) = 0

• if c < 0 we have

R(out)
min (λ(2), m) − R(out)

max (λ(1), m) < 0 when R(in)
min(λ

(2), m) − R(in)
max(λ

(1), m) = 0.

5. Numerical results

Let us now consider the minimum total probability of misclassification (TPM) defined by

TPM = 1
2P(misclassfied as λ(2) |input is λ(1)) + 1

2P(misclassfied as λ(1) |input is λ(2)).

For example, in figure 6, we see that TPM (in per cent) for the left upper panel is about
13.5% and for the right upper panel is 5.5%. Therefore adding inhibitory inputs to the neuron
considerably improves its discrimination capability, reducing TPM from 13.5% to 5.5%.

The parameters used in simulating the IF model are Vthre = 20 mV, Vrest = 0 mV, L =
1/20, a = b = 1 mV, p = 100, λ(1) = 25 Hz and λ(2) = 75 Hz. A refractory period of 5 ms
is added for all numerical results of efferent firing frequency. For each fixed set of parameters
of the model, 100 spikes are generated to calculate each mean, standard deviation etc. The
histograms are obtained using 100 firing rates, i.e. m = 100.
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Figure 6. Upper and middle panels, histograms of firing rates (Hz) with c = 0.1 for the IF model.
Left, exclusively excitatory inputs r = 0. Right, r = 0.95. Upper panels: pc = 15. The minimum
TPM is calculated according to the thick vertical lines (the optimal discrimination line). Middle
panels: pc = 25. Bottom panels: histograms of coefficient of variation (CV) for pc = 25 and left
with r = 0, right with r = 0.95, corresponding to the middle panels.

It is interesting to compare numerical results with theoretical results in the previous
sections. From previous sections we have

α(25, 75, 0.1, 1) = 32.5133

and

β(25, 75, 0.1, 1, 100) = 12.1251 β(0, 100, 0.1, 1, 100) = 7.8058.

From figure 8 (right) we conclude that the discrimination capacity would be between 15
and 20. The discrimination capacity from actual numerical simulations for r = 1 closes to
β(25, 75, 0.1, 1, 100).
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Figure 7. Histogram of firing rates (Hz) with c = 0.1 for the IF model, with identical parameters
as in figure 6, bottom panel (right), but only 10 spikes are used for estimating mean firing rates.

Numerical simulations have been extensively carried out for the integrate-and-fire model
and the IF–FHN model. All results are in agreement with our theoretical results in the previous
sections and were reported in a meeting [10].

6. Discussion

We have considered the problem of discriminating between input signals in terms of
an observation of efferent spike trains of a single integrate-and-fire neuron. We have
demonstrated, both theoretically and numerically, that two key mechanisms to improve the
discrimination capability of the model neuron are to increase inhibitory inputs and increase
correlation between coherent inputs. Analytical results for two most interesting cases c = 0
and r = 1 are obtained and the results are independent of model parameters.

Our results offer answers to a few issues which were extensively discussed in the literature.
We simply summarize two of them.

Increasing inhibitory inputs and increasing correlations between coherent inputs can
enhance the discrimination capacity of a neuron. However, on the other hand we all know that
increasing inhibitory inputs and correlations between inputs increases its output variability
of efferent spike trains, which will simply broaden the efferent firing rate histograms and so
reduce the discrimination capacity of a neuron. It seems our results in the current paper simply
contradict this. Nevertheless, we must note that all theoretical results in sections 4 and 3 are
obtained under the assumption that the efferent firing rates are exactly obtained. Results in
section 5 clearly demonstrate that theoretical results in sections 4 and 3 are true even when
the number of spikes used to obtain the firing rate histogram is small (100 spikes). In general
our results reveal that a neuron system faces two opposite requirements: to obtain the mean
firing rates as exactly as possible by reducing the variability of output spike trains (reducing
inhibitory inputs and input correlations) and to increase the discrimination capacity by
increasing inhibitory inputs and input correlations. To elucidate our points further, in figure 7,
we plot the firing rate histograms, using the identical parameters as in figure 6 (middle panel,
right), but with 10 spikes to estimate the mean, rather than 100 spikes. It is clearly shown that
the firing rate histograms in figure 7 are less widely separated than those in figure 6, middle
panel (right), and it is impossible to perfectly distinguish between two inputs. A neuronal
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Figure 8. TPM% versus 〈σ 〉 =
√

a2(1 + r)λ(1)pc(1 + c(pc − 1)) + a2(1 + r)
∑p

i=pc+1〈λi〉 with

〈λi〉 = 50 Hz (left) and TPM versus pc (right) for the IF model, r ∈ [0, 1], c = 0.1, λ(1) = 25 Hz.
When pc = 15 (left), it is clearly shown that TPM attains its optimal value at r = 1, i.e. the larger
the noise, the better the discrimination (see the right-hand figure as well). All other parameters are
the same as in section 5.

Figure 9. Correlations between coherent signals can be naturally introduced via neuronal pathways.

system must find a compromise way to resolve this issue. How to find an optimal trade-off
between the two requirements is an interesting research topic.

Secondly, there are many publications arguing that there is an optimal value of noise at
which a neuronal system can optimally extract information. Nevertheless, our results indicate
that the optimal point is simply the one at which the neuron’s output is most variable. We thus
conclude that the larger the noise, the better for the neuron system (see the paragraph above
and figure 8) to separate masked signals. This confirms the fact that noise is useful in a neural
system, but not via the form of stochastic resonance.

The only assumption we introduced in the model is that coherent signals are more
correlated than random signals. This seems a quite natural assumption given the structured
cortical areas. Figure 9 illustrates the point. Coherent signals are transmitted by neurons
grouping together (cortical columns) and neurons in the same column are bound to fire with a
correlation. In contrast, noisy (distorted) signals are less correlated.

The integrate-and-fire model is the simplest model in theoretical neuroscience. One
might easily argue that the model is too simple to be true for a realistic biological neuron.
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Nevertheless, we have seen in the past few years that the integrate-and-fire model fits well
with many experimental data (see, for example, [2, 14, 16]) and still serves as a canonical
model of neurons. On the other hand, we have tested results in the current paper on other
models as well [10]. It would be very interesting to investigate the impact of adaptation [7]
and dynamical synapses [16] on discrimination tasks.

Currently we are also working on building up a system which mimics experiments carried
out in [31, 23] etc with random dot stimuli and making judgments on dot moving directions
[12].
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Appendix

Proof of theorems

We only consider the case of c > 0. The case of c < 0 can be treated analogously

Lemma 2. For fixed y > 0, g(y/z)/z is a decreasing function of z > 0.

Proof. Note that g(x) > 0,(
g(y/z)

z

)′
= −g′(y/z)y/z − g(y/z)

z2

and the identity

g′(x) = 2xg(x) + 1

hence the conclusion follows.
We first prove theorem 2 for c > 0 and r = 1. Denote

A(pc) =
∫ VthreL

0
g

(
y

a
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax]2

)
dy

=
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax]√
[λ(2)pc(1 + c(pc − 1))]

×
∫ VthreL

0
g

(
y

a
√

[λ(2)pc(1 + c(pc − 1))]2

)
dy. (A1)

�

Lemma 3. When r > 0, c > 0 we have

R(out)
min (λ(2)) − R(out)

max (λ(1)) > 0 when R(in)
min(λ

(2)) − R(in)
max(λ

(1)) = 0.

Proof. We prove the conclusion for r = 1 first. Note that

R(in)
min(λ

(2)) − R(in)
max(λ

(1)) = 0
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implies that

λ(2)pc = pcλ
(1) + (p − pc)λmax.

Hence

λ(2)pc + cλ(2)pc(pc − 1) > pcλ
(1) + (p − pc)λmax + cλ(1)pc(pc − 1).

For y � 0 according to lemma 2, we therefore have
1√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax]

× g

(
y

a
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax]

)
dy

>
1√

[λ(2)pc(1 + c(pc − 1))]
g

(
y

a
√

[λ(2)pc(1 + c(pc − 1))]

)
dy. (A2)

This fact, together with the fact that the function A(pc) is an increasing function of pc, yields
the conclusion that the intersection of A(pc) with y = 0 is on the left-hand side of x = 0 (see
figure 4 upper panel, right) and so the conclusions of lemma 3 with r = 1 follow.

Now we turn our attention to the general case.
The key fact we employ in the proof is that the conclusions for the case of r = 1 are

independent of the upper bound, i.e., VthreL, of the integration. As in the case of r = 1

R(in)
min(λ

(2)) − R(in)
max(λ

(1)) = 0

implies that

λ(2)pc = pcλ
(1) + (p − pc)λmax.

Hence

λ(2)pc + cλ(2)pc(pc − 1) > pcλ
(1) + (p − pc)λmax + cλ(1)pc(pc − 1).

Therefore∫ VthreL

0
g

(
y − a[pcλ

(1) + (p − pc)λmax](1 − r)

a
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax](1 + r)

)
dy

−
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax]√
[λ(2)pc(1 + c(pc − 1))]

×
∫ VthreL

0
g

(
y − a(pcλ

(2))(1 − r)

a
√

[λ(2)pc(1 + c(pc − 1))](1 + r)

)
dy

=
∫ VthreL−a(pcλ

(2))(1−r)

−a(pcλ(2))(1−r)

g

(
y

a
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax](1 + r)

)
dy

−
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax]√
[λ(2)pc(1 + c(pc − 1))]

×
∫ VthreL−a(pcλ

(2))(1−r)

−a(pcλ(2))(1−r)

g

(
y

a
√

[λ(2)pc(1 + c(pc − 1))](1 + r)

)
dy

=
[∫ min{VthreL−a(pcλ

(2))(1−r),0}

−a(pcλ(2))(1−r)

+
∫ max{VthreL−a(pcλ

(2))(1−r),0}

0

]
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×
[
g

(
y

a
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax](1 + r)

)

−
√

[λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax]√
[λ(2)pc(1 + c(pc − 1))]

× g

(
y

a
√

[λ(2)pc(1 + c(pc − 1))](1 + r)

)]
dy. (A3)

From the case of r = 1, we then assert that the term∫ max{VthreL−a(pcλ
(2))(1−r),0}

0
[·] dy

is greater than zero. In the case of the term

∫ min{VthreL−a(pcλ
(2))(1−r),0}

−a(pcλ(2))(1−r)

[·] dy

we can change the variable from y to −y and use the conclusions of r = 1 to show that it is
also greater than zero. Furthermore, it is easily seen that

R(out)
min (λ(2)) − R(out)

max (λ(1)) < 0

when pc → 0.
Combining all conclusions above, we have proved theorem 2. �

Next we prove equations (11) and (10), i.e. theorem 1.

Lemma 4. Equations (11) and (10) are the solution of

pcλ
(1) + (p − pc)λmax = pcλ

(2)

and

λ(1)pc(1 + c(pc − 1)) + (p − pc)λmax = λ(2)pc(1 + c(pc − 1)).

Proof. In terms of lemma 2, the conclusions are obvious. �

Theorem 3 and theorem 4 can be proved similarly.
Finally we want to say a few words on the proof of the stronger version of the theorems.

As above, we intend to assert that

R(out)
min (λ(2)) − R(out)

max (λ(1))

is an increasing function r when λ(1)pc + (p − pc)λmax > λ(2)pc (see figure 4, upper panel,
right). Alternatively we can prove that R(out)

min (λ(2)) − R(out)
max (λ(1)) = 0 for r = r1, but

R(out)
min (λ(2)) − R(out)

max (λ(1)) > 0 for r = r2 > r1, as in lemma 3. However, when r = r1 > 0,
we do not have a clear-cut expression as in equation (11) and so we are not able to prove the
stronger version.
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